Abstract In June 2000, the United States National Institutes of Health (NIH) organized a review of the scientific evidence on the effectiveness of condoms in preventing sexually transmitted infections (STIs). The review concluded that condoms were effective in protecting against transmission of HIV to women and men and in reducing the risk of men becoming infected with gonorrhea. Evidence for the effectiveness of condoms in preventing other STIs was considered to be insufficient. We review the findings of prospective studies published after June 2000 that evaluated the effectiveness of condoms in preventing STIs. We searched Medline for publications in English and included other articles, reports, and abstracts of which we were aware. These prospective studies, published since June 2000, show that condom use is associated with statistically significant protection of men and women against several other types of STIs, including chlamydial infection, gonorrhea, herpes simplex virus type 2, and syphilis. Condoms may also be associated with protecting women against chlamydia. While no published prospective study has found protection against genital human papillomavirus (HPV) infection, two studies reported that condom use was associated with higher rates of regression of cervical intraepithelial neoplasia and clearance of cervical HPV infection in women and with regression of HPV-associated penile lesions in men. Research findings available since the NIH review add considerably to the evidence of the effectiveness of condoms against STIs. Although condoms are not 100% effective, partial protection can substantially reduce the spread of STIs within populations.

Keywords Condoms/utilization; Sexually transmitted diseases/prevention and control; Herpes genitalis/prevention and control; Gonorrhea/prevention and control; Chlamydia infections/prevention and control; Trichomonas vaginitis/prevention and control; Syphilis/prevention and control; Papillomavirus, Human; Prospective studies; Review literature (source: MeSH, NLM).

Mots clés Condom/utilisation; Maladies sexuellement transmissibles/prévention et contrôle; Herpès génital/prévention et contrôle; Gonococcie/prévention et contrôle; Chlamydie, Infection/prévention et contrôle; Vaginite trichomonas/prévention et contrôle; Syphilis/ prévention et contrôle; Papillomavirus humain; Etude prospective; Revue de la littérature (source: MeSH, INSERM).

Palabras clave Condones/utilización; Enfermedades sexualmente transmisibles/ prevención y control; Herpes genital/ prevención y control; Gonorrrea/ prevención y control; Infecciones por chlamydia/ prevención y control; Vaginitis por trichomonas/ prevención y control; Sífilis/ prevención y control; Papilomavirus humano; Estudios prospectivos; Literatura de revisión (fuente: DeCS, BIREME).

Introduction In June 2000, the United States National Institutes of Health (NIH), in collaboration with the Centers for Disease Control and Prevention (CDC), the Food and Drug Administration and the United States Agency for International Development (USAID), convened an expert panel to evaluate peer-reviewed published studies on the effectiveness of latex condoms used by men (male latex condoms) in preventing sexually transmitted infections (STIs) during vaginal intercourse (1). The NIH defines condom effectiveness as “the level of protection against STDs (sexually transmitted diseases) when condoms are used consistently and correctly” (1).

The review looked at HIV infection, gonorrhea, chlamydial infection, syphilis, chancroid, trichomoniasis, genital herpes and genital human papillomavirus (HPV) infection. The panel of 28 researchers excluded papers with flawed study designs or methods.
Based on the results of the remaining prospective studies, the panel reached three key conclusions. First, consistent condom use (i.e., using condoms during every act of vaginal intercourse) among heterosexual couples in which one partner was infected with HIV reduced the risk of HIV transmission from men to women and vice versa. This finding was based on a meta-analysis of condom effectiveness studies by Davis & Weller (2). They estimated that compared with no condom use, consistent condom use resulted in an overall 87% reduction in risk of HIV transmission, with the best-case and worst-case scenarios ranging from 60% to 96%. In an update of this analysis, Weller & Davis reported a revised estimate of an 80% reduction in risk with a range of 35–94% (3).

Second, the NIH report concluded that consistent condom use may reduce the risk of gonorrhoea in men. This finding was based on a 1978 report by Hooper et al. (4), which was a prospective study of the risk of transmission of gonorrhoea to men in the United States Navy from a pool of women with a known prevalence of gonorrhoea. A subsequent reanalysis of those data showed that condoms provided a statistically significant level of protection against the combined outcome of gonorrhoea or nongonococcal urethritis in exposed men (5).

Third, due to insufficient evidence from prospective studies, the reviewers were unable to determine the effectiveness of condoms in preventing gonorrhoea and chlamydial infection in women, or in preventing syphilis, chancroid, trichomoniasis, genital herpes or genital HPV infection in men or women. The panel strongly cautioned the public against misinterpreting the scanty evidence. The small number of well-designed prospective studies precluded the panel from making judgments about the effectiveness of condoms in preventing other STIs; the reviewers stated that the lack of data were not to be construed as evidence either supporting or denying the effectiveness of condoms.

As the NIH prepared to release its report in July 2001, other health agencies responded to the pending report (6, 7). For example, the CDC reviewed its treatment guidelines for other health agencies responded to the pending report (condoms). As evidence either supporting or denying the effectiveness of condoms was 25%; it was relatively low because the couples were monogamous. Using condoms during more than 25% of sex acts was associated with a 92% reduction in the risk of women acquiring HSV-2 but was not associated with a protective effect among men.

However, in a separate trial of this candidate vaccine among people with more than three sexual partners or at least one STI in the past year, Wald et al. found that the median reported use of condoms was 65%, and that using condoms during more than 65% of acts of vaginal or rectal penetration provided partial protection for men (A. Wald et al., unpublished data, presented at the 2002 National STD Prevention Conference in San Diego, CA). Nonetheless, HSV-2 infection was acquired, although rarely, even by people who reported using condoms during 100% of sexual activity.

Gonorrhoea, chlamydial infection, trichomoniasis and syphilis

For the first time, Sanchez et al. (13) demonstrated the statistically significant effectiveness of condoms in preventing not only gonorrhoea, but also chlamydial infection and trichomoniasis in women. A cohort of 917 female sex workers in Lima, Peru, were re-examined monthly for STIs; they were also given condoms. During the observation period of 7908 person-months, the reported rate of consistent condom use rose by 20%. Compared with all others, those women who reported using condoms consistently since the previous examination had a 62% reduction in the risk of acquiring gonorrhoea and a 26% reduction in the risk of acquiring chlamydial infection. There was also evidence of a significant reduction in the risk of acquiring trichomoniasis.
Fig. 1. Effectiveness of condoms in preventing of sexually transmitted infections

Ahmed (10) HIV* (IR*)
Weller (2) HIV (IR)
Davis (3) HIV (IR)
Pinkerton (11) HIV (RR*)
Wald (12) HSV-2 (HR*)
 Female HSV-2
 Male HSV-2
 HSV-2
Wald (unpublished data) HSV-2 (HR)
 Female HSV-2
 Male HSV-2
 HSV-2
Sanchez (13) STIs (OR*)
 Female, gonorrhoea
 Female, chlamydia
 Female, trichomoniasis
 Female, trichomoniasis at F/U*
Crosby (14) STIs (RR)
 Female, multiple STIs
Ahmed (10) STIs (OR)
 Gonorrhoea or chlamydia
 Syphilis
 Bacterial vaginosis
 Trichomoniasis
Hooper (4) Male, gonorrhoea (OR*)
Cates (5) Male, urethral infection (OR*)
Bunnell (15) STIs (RR)
 Female, multiple STIs
Zenilman (16) STIs (OR)
 Female, multiple STIs
 Male, multiple STIs
 Male, chlamydia
Ho (17) Female, HPV (RR)
Zondervan (18) HPV-associated conditions (OR)
 Female, dysplasia
 CIN*
 ICC*
Winer (19) Female, HPV (HR)
Hogewoning (20) HPV or CIN (HR)
 Female, CIN
 Female, HPV
Bleeker (21) HPV-associated lesions (HR)
 Flat penile lesions
 Papular penile lesions
 All penile lesions

*HIV = human immunodeficiency virus.
*IR = incidence ratio.
*RR = relative risk.
HSV-2 = herpes simplex virus type 2.
*HR = hazard ratio.
STI = sexually transmitted infection.
*OR = odds ratio.
F/U = follow-up.
The ORs for these studies were zero, and the lower boundary of the 97.5% CI was 0.
HPV = human papillomavirus.
CIN = cervical intraepithelial neoplasia.
ICC = invasive cervical cancer.

The bold vertical lines correspond to the point estimates, and the horizontal lines to the 95% confidence intervals.
Macaluso et al. (unpublished report submitted to the US National Institute of Child Health and Human Development, 2000) found that among women considered to be at high-risk for STIs the consistent and correct use of latex male condoms or female condoms was associated with a statistically significant reduction in the combined incidence of gonorrhea, chlamydial infection or syphilis in high-risk women when compared to rates of use of less than 50%. This prospective study followed female patients at STD clinics in the United States who had monthly STI tests for six months from 1995 to 1998.

Crosby et al. (14) reported that using condoms for 100% of sex acts was associated with a significant reduction in the combined incidence of gonorrhea, chlamydial infection, or trichomoniasis among adolescent African-American females aged 14–18 years. In this study, the researchers tested for all three STIs and treated girls who were infected at baseline. Six months later, the 380 girls who reported penile–vaginal sex were retested and interviewed about condom use. Of the girls who reported using condoms each time they had had sex since baseline, 17.8% of them had at least one STI compared with 30% of the girls who did not report using condoms consistently (odds ratio (OR) = 1.85; 95% confidence interval (CI) = 1.13–3.04 after adjusting for STI at baseline and having more than one sex partner in the interim).

Ahmed et al. (10) analysed data from a community-based randomized controlled trial of mass treatment for STIs in rural Rakai, Uganda, from 1994 to 1998. HIV prevalence among the study population was 16%; the prevalence of syphilis was 10%, chlamydial infection was 3.1% and gonorrhoea was 1.5%. Of the 17 264 adult participants, only 4.4% reported consistently using condoms in the year prior to the study. During follow-up, for men and women combined, consistent condom use was associated with a significant reduction in the incidence of STIs when compared with the non-use of condoms. There was a significant reduction in the incidence of HIV (relative risk (RR) = 0.37; 95% CI = 0.15–0.88), a significant reduction in syphilis seroprevalence (OR = 0.71; 95% CI = 0.53–0.94) and a significant reduction in the prevalence of gonorrhoea, chlamydial infection, or both (OR = 0.50; 95% CI = 0.25–0.97). The prevalences of trichomoniasis and bacterial vaginosis among women were not reduced.

Human papillomavirus infection

Manhart & Koutsky (22) evaluated the effectiveness of condoms in protecting against HPV infection and HPV-related conditions, such as genital warts and cervical cancer. A meta-analysis of 20 studies found no evidence that condoms were effective against genital HPV infection. Neither of the two prospective studies reviewed found that consistent condom use was effective in preventing genital HPV infection or HPV-related conditions. Subsequently, Winer et al. (19) followed 444 female students at university as part of a longitudinal study of the cumulative incidence of genital HPV infection. They found that consistently using condoms with a new partner was not associated with significant protection against HPV (hazard ratio (HR) = 0.8; 95% CI = 0.5–1.2). Data on condom breakage or vaginal penetration before condoms were put on were not collected, nor was the analysis adjusted for frequency of intercourse.

Dunne et al. reviewed the methods of 44 studies conducted between 1996 and 2001 that examined condom use, HPV infection, and HPV-related conditions (EF Dunne et al., unpublished data presented at the HPV Clinical Workshop and 20th International Papillomavirus Conference, Paris, 2002). They found that methodological limitations made it difficult to accurately assess condom effectiveness, and they called for studies to consider the consistency and correctness of condom use, incident infections, and the infection status of the partner in the design of studies.

In a unique clinical trial in the Netherlands, Hogewoning et al. (20) randomly allocated 135 women not regularly using condoms who had untreated cervical intraepithelial neoplasia (CIN) and their male partners either to use condoms or not use condoms for all instances of vaginal intercourse. Those couples randomized to use condoms had a significantly higher cumulative two-year rate of disease regression (53% versus 35%; HR = 3.1; 95% CI = 1.4–7.1) as well as a higher cumulative two-year rate of HPV clearance (23% versus 4%; HR = 12.1; 95% CI = 1.5–97.2).

Bleeker et al. (21) examined the male partners of the women in this study for the presence of penile lesions and for HPV using polymerase chain reaction testing of penile swabs. Consistent condom use over a minimum period of three months was associated with a reduction in the median time until clinical regression of all penile lesions (HR for regression = 1.8; 95% CI = 1.0–3.3; P = 0.05 by Cox regression analysis). Interpreting the findings of these two studies is not simple (20, 21). The authors suggest that transmission of HPV back and forth between partners during unprotected sex may prolong the duration of HPV infection, CIN, and penile lesions.

Discussion

This review of prospective studies published since June 2000 has identified evidence that consistent condom use is associated not only with reduced transmission of HIV and with reduced acquisition of urethral infection among men, but also with:

• reduced acquisition of genital HSV-2 infection by men and women;
• reduced acquisition of syphilis by men and women;
• reduced acquisition of chlamydial infection by men and women;
• reduced acquisition of gonorrhoea by women;
• possibly reduced acquisition of trichomoniasis infection by women;
• accelerated regression of cervical and penile HPV-associated lesions and accelerated clearance of genital HPV infection by women.

Limitations of studies

Only in prospective studies can the temporal relationship between STIs and condom use be explored. Because many prospective studies have now shown that condom use reduces the transmission of HIV and several other STIs, randomized trials with a high-risk control group that doesn’t use condoms have been viewed as unwarranted. Although many studies have randomly allocated people or samples to various prevention interventions that included the enhanced promotion of condom use, we believe the two studies of couples with HPV-related conditions (20, 21) are the only trials in which participants were randomly allocated to condom use or no condom use. The study was strengthened by randomization of couples rather than individuals, randomization to consistent condom use compared with no condom use, and by measurement of outcomes in male and female partners simultaneously.

**Public Health Reviews
Effectiveness of condoms in preventing STIs**
Two methodological issues in observational studies of condom effectiveness are of particular concern: (1) underestima-
tion of point estimates, and (2) exposure to infected partners. Underestimates of condom effectiveness could result from
over-reporting of condom use by participants in order to satisfy
the interviewer (known as social desirability bias). Devine &
Aral (23) conducted simulation experiments to illustrate that
over-reporting of condom use reduced both the point estimate
of condom effectiveness and the power of the study to detect a
protective effect of condom use.

Studies that do not adjust for the improper use of con-
doms could also underestimate the effectiveness of proper use.
(24) For example, in a retrospective study in the United States
among 98 male university students selected because they had
used condoms during vaginal intercourse at least five or more
times, and at least once during the previous month, Warner et
al. (24) found that in 13% of 270 instances, condoms broke or
were used incorrectly; this allowed for direct penile–vaginal
contact, and consequently, exposure to STIs.

Restricting condom effectiveness analyses to participants
with known exposure to infected partners reduces confounding
and provides a more accurate measurement of the protective
effects of condoms against STIs. In a cross-sectional analysis of
baseline data from Project RESPECT, Warner et al. (25) com-
pared estimates of the effectiveness of condoms in a subsample
of people with known exposure (they were referred to the clinic
because their partner had gonorrhoea or chlamydial infection)
with estimates in a subsample of people who visited the clinic
for other reasons. Among the 429 participants with known exposure,
the consistent use of condoms was associated with a significant
reduction in those STIs (OR = 0.42; 95% CI = 0.18–0.99).
Among the 4314 participants for whom exposure information
was not known, the consistent use of condoms was less effective
(OR = 0.82; 95% CI = 0.66–1.01).

Fitch et al. (26) note the importance of differentiating
between effectiveness in single-episode use and “period effective-
ness”. The latter measure takes into account user error, condom
failure, the variable infectiousness of particular STIs, and the
impact of repeated exposure. Also, it has proven far more feasible
to promote condom use during occasional acts of commercial
or casual sex than to introduce and sustain consistent condom
use during repeated acts of intercourse over years among stable
couples (9).

Crosby et al. (27) identified several potential problems
and solutions in condom effectiveness studies.

• An infection-free cohort should be established at baseline
 through testing and treatment of nonviral STIs.

• It is essential to have sample sizes that are adequate to detect
 a significant impact of condom use.

• Using the number of unprotected sex acts is preferable to
calculating the percentage of times that a condom is used,
as the latter does not account for variation in frequency of
intercourse.

In view of these issues, it seems remarkable that data from lon-
gitudinal studies and the one randomized trial as well as several
cross-sectional or case–control studies have nonetheless demon-
strated the statistically significant effectiveness of condoms in
protecting against HIV and most of the other STIs examined.

Not all earlier prospective observational studies found
that consistent condom use was associated with a decreased
risk of STIs. For example, Bunnell et al. (15) followed 484
adolescents at four clinics over a six-month period and found
an incident STI in 21% of 61 participants reporting 100% condom use and in 23% of 423 adolescents reporting inconsis-
tent use or no condom use. Zenilman et al. (16) prospectively
studied condom use among 598 male and female patients at
an STD clinic in Baltimore, Maryland. During follow-up STI
incidence was similar for participants reporting 100% condom
use and for those reporting that they never used condoms; this
was found for both male and female patients. However, when
specific STI incidence was examined rather than combined STI
incidence, consistent condom use (as compared with sometime
use or never use) was associated with a significantly lower rate
of chlamydial infection in men (1, 16).

Recommendations for further research

Future research using improved methods for ascertaining the
consistency, correctness, and selectivity of condom use may lead
to better point estimates of effectiveness. In future trials the
accurate assessment of condom use will help delineate the causal
pathway linkage of the effectiveness of STI prevention methods
that do or do not include the promotion of condom use (28).

The general quality of research on condom effectiveness
in preventing HIV and other STIs can be readily improved
by routinely collecting the partner-specific data in relation to
testing for current STIs or incident HIV infection. Questions
that should be asked include:

• How many times did you have sex with a particular partner
during the past month? How many times were condoms
 not used with that partner during the past month?
• How many times in the past month were condoms put on
 after the start of intercourse? How many times did condoms
 slip off or break before intercourse ended?
• How many times has a particular partner had an STI in the
 past month? What type(s) of STI(s)?
• Has that particular partner had other partners during the
 past month?

Condom use is typically more common with partners perceived
as likely to be infected than with those not perceived as likely
to be infected. Collecting similar data for the past three-month
period or longer would also be useful, depending on which
STI is being studied. Such information would contribute
to research on condom effectiveness and would strengthen
monitoring and evaluation processes.

The effectiveness of condom-promotion
programmes

The question remains whether programmes designed to increase
the frequency of condom use actually achieve increased use and
whether they decrease the individual’s risk of acquiring HIV
and other STIs. Many studies have shown that condom-pro-
motion interventions decrease self-reports of unprotected sex,
but fewer have examined the impact of such programmes on
the actual incidence of STIs, including HIV infection. Fewer
still have done so in randomized controlled trials in which
participants were followed prospectively and specifically offered
STI testing. Four individual-level or group-level randomized
controlled trials that have included condom promotion have
reported a reduced risk of STIs (29–31) (CB Boyer et al., un-
published data presented at the 15th Biennial Congress of the
International Society for Sexually Transmitted Diseases Research,
Ottawa, 2003).
King K. Holmes et al.

Project RESPECT, a multisite, individual-level randomized controlled trial involving 5700 heterosexual, HIV-negative patients at public STI clinics in the United States found that interactive, client-centred HIV and STI risk reduction counselling that emphasized avoiding unprotected sex resulted in more frequent reports of 100% condom use and a statistically significant 20% lower incidence of STIs over 12 months of follow-up when compared with counselling that used only didactic prevention messages (29).

In a group-level randomized trial, Shain et al. (30) found that enhanced counselling, which included three intensive, small-group sessions for female Hispanic and African-American patients at an STI clinic resulted in a lower incidence of gonorrhea and chlamydial infection over the following year when compared with standard counselling. The sessions were based on ethnographic research: the sessions for Hispanic women were similar to those for African-American women, but there were some differences in emphasis. The effect of the intervention appeared to be mediated by a number of behavioural changes including increased condom use (32). Two other group-level randomized trials involving women also showed efficacy in preventing STIs (31, CB Boyer et al. unpublished data).

A randomized trial of voluntary HIV testing and counselling in Kenya, the United Republic of Tanzania and Trinidad between 1995 and 1998 (33), which was modelled on the Project RESPECT intervention, compared client-centred counselling with giving health information alone. It found there was a decrease in the incidence of unprotected intercourse with non-regular partners among those who had counselling. There was also a reduction of about 20% in new STIs which was similar to that seen in Project RESPECT but not statistically significant in this underpowered study.

In a field trial in Thailand involving nonrandomized but comparable groups of army conscripts, Celentano et al. (34) found that groups participating in a multicomponent HIV and STI prevention intervention that lasted for several months and contained a condom promotion component had 80% fewer incident STIs when compared with the control groups.

Finally, a London-based group-randomized trial of a one-day cognitive behavioural intervention designed to reduce STI incidence among men who have sex with men had different results (35). The intervention group reported a modest decrease in the incidence of unprotected anal intercourse but actually experienced a significantly increased risk of new STIs in comparison with the control group. This study illustrates the importance of measuring objective STI outcomes rather than relying only on self-reported changes in behaviour.

Conclusions

Since 2000 important new evidence (from prospective observational studies, one couple-randomized trial and additional multicomponent STI prevention trials that included condom-promotion components) has come to light to support the effectiveness of condoms in preventing STIs in men and women. In no study has the effectiveness been 100%. Nonetheless, even partially effective interventions can have a major impact on controlling the spread of STIs in the population (36). Balanced STI and HIV prevention programmes should include condom promotion along with a complementary combination of prevention strategies targeted towards different age groups, life stages, epidemic levels, and settings (37, 38). Condom promotion represents an important component of comprehensive HIV-prevention and STI-prevention strategies.

Acknowledgements

The authors would like to thank Daniel Halperin, Lee Warner, Barbara de Zalduondo, and two anonymous reviewers for insightful comments on this article. We would also like to thank James P. Hughes for statistical advice and Andrew Blair for graphic design.

This article is one of a series of papers on advances in HIV/AIDS research. We would like to thank Neen Alrutz at USAID, Elaine Douglas, Ann Downer, Ron Nelson, Mary Fielder, Holly Huckeba and Amy Welton at the University of Washington for their invaluable help in creating the series.

Funding: This work was funded by the Synergy Project, USAID contract No. HRN-C-00-99-00005-00. The Synergy Project is managed by TvT Global Health and Development Strategies, a division of Social & Scientific Systems, Inc. The opinions expressed in this article are those of the authors and do not necessarily reflect the views of Social & Scientific Systems, or USAID.

Conflicts of interest: none declared.

Résumé

Efficacité du préservatif pour la prévention des infections sexuellement transmissibles

En juin 2000, les National Institutes of Health (NIH) des États-Unis d'Amérique ont organisé une revue des preuves scientifiques de l'efficacité du préservatif pour la prévention des infections sexuellement transmissibles (IST). Cet examen a permis de conclure que le préservatif était efficace pour la prévention de la transmission du VIH chez l'homme comme chez la femme et pour réduire le risque d'infection gonococcique chez l'homme. Les preuves de son efficacité pour la prévention des autres IST ont été jugées insuffisantes. Nous avons examiné les résultats d'études prospectives publiées après juin 2000 et portant sur l'efficacité des préservatifs pour la prévention des IST. Nous avons recherché sur Medline les publications en anglais et y avons ajouté d'autres articles, rapports et sommaires dont nous avions connaissance. Ces études prospectives publiées depuis juin 2000 montrent que l'utilisation du préservatif est associée à une protection statistiquement significative, chez l'homme comme chez la femme, contre plusieurs autres types d'IST, dont les infections à Chlamydia, les gonococcies, les infections par le virus de l'herpès humain type 2 et la syphilis. Elle peut également être associée à une protection contre la trichomonase chez la
Resumen

Eficacia del preservativo como medio de prevención de las infecciones de transmisión sexual

En junio de 2000, los Institutos Nacionales de Salud (NIH) de los Estados Unidos organizaron una revisión de la evidencia científica disponible sobre la eficacia del preservativo como medio de prevención de las infecciones de transmisión sexual (ITS). El estudio concluyó que los preservativos protegían eficazmente contra el VIH a hombres y mujeres y reducían el riesgo de que los hombres contrajeran gonorrea. No obstante, se consideró insuficiente la evidencia sobre la eficacia del preservativo como medio de prevención de otras ITS. Hemos examinado aquí los resultados de estudios prospectivos publicados con posterioridad a junio de 2000 en los que se evaluó la eficacia de los preservativos como método de prevención de las ITS. Buscamos en MEDLINE publicaciones en inglés, y añadimos otros artículos, informes y resúmenes que conocíamos. Estos estudios prospectivos, publicados después de junio de 2000, revelan que el uso de preservativos se asocia a una protección estadísticamente significativa de hombres y mujeres frente a varios tipos de ITS, incluidas las infecciones por clamidias, la gonorrea, el virus herpes simple tipo 2 y la sífilis. Los preservativos también pueden proteger a las mujeres contra la tricomoniasis. Si bien ninguno de los estudios prospectivos publicados ha revelado un efecto de protección contra la infección por el papilomavirus humano (VPH), en dos estudios se observó que el uso del preservativo se asociaba a mayores tasas de regresión de las neoplasias intraepiteliales cervicouterinas y de desaparición de la infección cervicouterína por VPH en las mujeres, así como de regresión de las lesiones de pene por VPH en los hombres. Los resultados de investigación aparecidos después de la revisión de los NIH refuerzan considerablemente la evidencia acumulada sobre la eficacia de los preservativos contra las ITS. Aunque los preservativos no son eficaces al 100%, la protección parcial conseguida puede reducir sustancialmente la propagación de las ITS en las poblaciones.

References

King K. Holmes et al.

Table 1. Summary of prospective studies on effectiveness of condom use in preventing sexually transmitted diseases published or presented since June 2000 compared with studies cited in National Institutes of Health review (1)

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Participants</th>
<th>Definition of condom use</th>
<th>Notes on estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ahmed et al. 2001 (10)</td>
<td>Community-based randomized trial of mass treatment for STIs in rural Rakai, Uganda, with follow-up every 10 months for 30 months</td>
<td>9536 women and 7728 men aged 15–59 years in 56 communities</td>
<td>Consistent condom use versus never use</td>
<td>Poisson regression model with covariates for demographic characteristics and behavioural risk</td>
</tr>
<tr>
<td>Weller & Davis 2004 (3)</td>
<td>Meta-analysis of condom effectiveness in reducing heterosexual transmission based on studies in several countries</td>
<td>14 longitudinal studies of serodiscordant couples</td>
<td>Consistent condom use versus never use</td>
<td></td>
</tr>
<tr>
<td>HIV studies cited in NIH report (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Davis & Weller 1999 (2)</td>
<td>As Weller & Davis (3) above</td>
<td>25 studies of serodiscordant couples, including 13 cross-sectional studies and 12 longitudinal studies</td>
<td>As Weller & Davis above</td>
<td></td>
</tr>
<tr>
<td>Pinkerton and Abramson (11)</td>
<td>As Weller & Davis (3) above</td>
<td>9 studies of serodiscordant couples</td>
<td>Consistent condom use versus inconsistent use or no use</td>
<td></td>
</tr>
<tr>
<td>HSV-2 studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wald et al. 2001 (12)</td>
<td>Randomized, double-blind, placebo-controlled trial of candidate HSV-2 vaccine in USA with 11 follow-up visits over 18 months</td>
<td>528 monogamous couples serodiscordant for HSV-2, including 267 couples with seronegative women and 261 couples with seronegative men</td>
<td>Condom use in more than 25% of sexual acts between follow-up visits</td>
<td>Estimates adjust for covariates</td>
</tr>
<tr>
<td>Wald et al., unpublished data, 2002</td>
<td>Candidate HSV-2 vaccine trial in USA with 18 months of follow-up</td>
<td>1862 HSV-2 susceptible people with ≥ 4 sexual partners or ≥ 1 STD in the past year</td>
<td>Condom use in more than 65% of sexual acts</td>
<td>Complete data not yet published</td>
</tr>
<tr>
<td>Bacterial and parasitic STIs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanchez et al. 2003 (13)</td>
<td>Prospective study of condom promotion and improved STI services at two clinics in Lima, Peru, with monthly follow-up for 6 months</td>
<td>917 female sex workers who attended the clinics</td>
<td>Participants who always used condoms with clients during the previous month versus all others</td>
<td>GEE model. Covariates differ across infections. Published OR and P-values were used to derive 95% CI. For gonorrhoea, the P-value (<0.001) was not exact, so the actual CI is shorter than the one reported in Fig.1.</td>
</tr>
<tr>
<td>Macaluso et al., unpublished data, 2000</td>
<td>Prospective study of a behavioural intervention to promote use of the female condom in USA with follow-up every 4 weeks for 6 months</td>
<td>920 females who attended public STI clinics</td>
<td>Consistent use of male condoms or female condoms between follow-up visits with no problems reported versus condom use in ≤ 50% of sex acts</td>
<td>Outcome was incidence of gonorrhoea, chlamydial infection, or syphilis. Complete data not yet published</td>
</tr>
<tr>
<td>Study</td>
<td>Design</td>
<td>Participants</td>
<td>Definition of condom use</td>
<td>Notes on estimates</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Crosby et al. 2003 (14)</td>
<td>Randomized controlled trial of an HIV prevention programme in USA with follow-up visit after 6 months</td>
<td>380 sexually active African-American females aged 14–18 years recruited from medical clinics and high schools</td>
<td>Consistent condom use versus non-consistent use</td>
<td>Outcome was incidence of gonorrhoea, chlamydial infection, or trichomoniasis. Estimates adjusted for covariates. The OR presented in Fig. 1 is the inverse of the results reported in Crosby et al. (14).</td>
</tr>
<tr>
<td>Ahmed et al. 2001 (10)</td>
<td>See entry under HIV above</td>
<td>See entry under HIV above</td>
<td>See entry under HIV above</td>
<td>GEE model adjusted for covariates</td>
</tr>
<tr>
<td>Bacterial and parasitic STIs cited in NIH report (1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hooper et al. 1978 (4)</td>
<td>Prospective cohort study to estimate the risk of transmission of gonorrhoea from infected females to males at a port in the western Pacific</td>
<td>527 male American sailors who had sexual relations with commercial sex workers during a four-day shore leave</td>
<td>Condom use sometimes or always versus non-use</td>
<td>Published data and P-value were used to derive a CI for the OR based on an exact procedure</td>
</tr>
<tr>
<td>Cates & Holmes 1996 (5)</td>
<td>Reanalysis of Hooper et al.'s 1978 data that estimated the risk of acquisition of gonorrhoea or nongonococcal urethritis</td>
<td>As in Hooper et al. (4) above</td>
<td>As in Hooper et al. above</td>
<td>Published data and P-value were used to derive a CI for the OR based on an exact procedure</td>
</tr>
<tr>
<td>Bunnell et al. 1999 (15)</td>
<td>Prospective cohort study to assess the prevalence and incidence of STIs among adolescents in USA with one follow-up visit after 6 months</td>
<td>484 sexually active African-American females aged 14–19 years recruited from four health clinics</td>
<td>Consistent condom use reported at both baseline and follow-up (i.e. always used condom for birth control and with main partner) versus all others</td>
<td>Outcome was incident STIs, including gonorrhoea, chlamydial infection, trichomoniasis, syphilis, hepatitis B, and HSV-2. Estimates adjusted for covariates</td>
</tr>
<tr>
<td>Zenilman et al. 1995 (16)</td>
<td>Prospective cohort study to validate self-reported condom use in USA with one follow-up visit after 3 months</td>
<td>275 female patients and 323 male patients at two public STI clinics</td>
<td>Consistent condom use in 30 days before follow-up visit versus never use</td>
<td>Outcome was incident gonorrhoea, chlamydial infection, syphilis, or trichomoniasis. Estimates adjusted for covariates</td>
</tr>
<tr>
<td>HPV studies*</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manhart & Koutsky 2002 (22)</td>
<td>Meta-analysis of condom effectiveness in preventing HPV or HPV-related conditions (genital warts, CIN*, ICC*) in studies in several countries</td>
<td>20 studies, of which only two were prospective: Ho et al. 1998 (17) and Zondervan et al. 1996 (18). These are included in Fig. 1</td>
<td>Ho: Consistent use versus never use</td>
<td>Ho: Outcome was cervical HPV DNA. Investigators provided additional data for meta-analysis. Estimates adjusted for covariates</td>
</tr>
<tr>
<td>Winer et al. 2003 (19)</td>
<td>Prospective study to estimate cumulative incidence of HPV in USA with follow-up every 4 months for 3 years</td>
<td>444 female university students aged 18–20 years who tested negative for HPV DNA at baseline</td>
<td>Condom use always with new partners versus never use with new partners</td>
<td>Estimates adjusted for covariates</td>
</tr>
</tbody>
</table>
King K. Holmes et al. Effectiveness of condoms in preventing STIs

<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Participants</th>
<th>Definition of condom use</th>
<th>Notes on estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hogewoning et al. 2003 (20)</td>
<td>Randomized clinical trial of condom effectiveness in the Netherlands with follow-up at 3, 6, 12, 18 and 24 months</td>
<td>135 women with CIN who were not using condoms for birth control at baseline were randomly allocated. Outcomes were assessed for 125 women</td>
<td>Assigned to use condoms or not to use them</td>
<td>Outcomes were clinical regression of CIN and clearance of HPV. Estimates adjusted for covariates. Published HR of the probability of healing was inverted to show the effect of condoms in reducing the probability of not healing</td>
</tr>
<tr>
<td>Bleecker et al. 2003 (21)</td>
<td>As Hogewoning et al. (20) above</td>
<td>100 men who were partners of the women in Hogewoning et al. and who had penile lesions were assessed for outcomes</td>
<td>As Hogewoning et al. above</td>
<td>Estimates adjusted for covariates. Published HR of the probability of regression was inverted to show the effect of condoms in reducing the probability of not regressing</td>
</tr>
</tbody>
</table>

a HIV = human immunodeficiency virus; STIs = sexually transmitted infections.
b HSV-2 = herpes simplex virus type 2.
c HPV = human papillomavirus.
d CIN = cervical intraepithelial neoplasia.
e ICC = invasive cervical cancer.
f IRR = incidence rate ratio.
g CI = confidence interval.
h RR = relative risk.
i GEE = generalized estimating equation.
j OR = odds ratio.
k HR = hazard ratio.